编程猫 加入收藏  -  设为首页
您的位置:编程猫 > 编程 > 正文
微分运算法则是什么?
微分运算法则是什么?
提示:

微分运算法则是什么?

微分运算法则如下图: 微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。 相关性质: 通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数因变量的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。 当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。一元微积分中,可微可导等价。记A·△X=dy,则dy=f′(X)dX。例如:d(sinX)=cosXdX。

偏微分的运算法则是什么?
提示:

偏微分的运算法则是什么?

偏微分的运算法则是f=G/(G+G动)。包含未知函数的偏导数(或偏微分)的方程。偏微分的计算公式是得到函数z=f(x,y)则偏微分公式为 fx(x,y)或fy(x,y)。多元函数偏微分求法,全微分符合叠加原理,即全微分等于各偏微分之和。 偏微分也可以作为偏增量的近似,例如 f(x+△x,y,z)-。 偏微分的性质 偏微分基本公式为fx(x,y)或fy(x,y)。(∂u/∂x)dx才表示这是由于x的无限小增量dx所单独引起的u的无限小的增量,(∂u/∂y)dy才表示这是由于y的无限小增量dy所单独引起的u的无限小的增量,(∂u/∂z)dz才表示这是由于z的无限小增量dz所单独引起的u的无限小的增量,所以偏导数是一个整体记号,如∂/∂x表示对x求偏导,∂/∂y表示对y求偏导。 偏微分性质是客观世界的物理量一般是随时间和空间位置而变化的,因而可以表达为时间坐标t和空间坐标的函数,这种物理量的变化规律往往表现为它关于时间和空间坐标的各阶变化率之间的关系式,即函数u关于t与的各阶偏导数之间的等式。